
CSE 333 Section 5
C++ Classes and Dynamic Memory

Logistics

Due Today:

Homework 2 @ 11:59 pm

Due Wed (02/08):

Exercise 7 @ 11 am

Midterm next week (02/09-11)!

Review: Member vs. Non-Member Functions

● A member function is a part of the class and can be invoked
on the objects of the class

● A non-member function is a normal function that happens to
use the class
○ Often included in the module that defines the class

● Some functionality must be defined one way or the other, but
a lot can be defined either way, so letʼs examine the
differences…

Exercise 1: Member vs Non-Member Comparison

Member Non-member

Access to Private
Members:

Always ● Through getters and setters
● Through friend keyword (do

not use unless needed)

Function call (Func): obj1.Func(obj2) Func(obj1, obj2)

Operator call (*): obj1 * obj2 obj1 * obj2

When preferred: ● Functions that mutate the
object

● “Core” class functionality

● Non-mutating functions
● Commutative functions
● When the class must be on the

right-hand side

Destructor (dtor): Cleans up the resources of an object when it falls out of scope or is deleted.

Constructors (ctor): Construct a new object (parameters must differ).

Copy Constructor (cctor): Constructs a new object based on another instance. Creates copies for
pass-by-value (i.e., non-references).

class Bar {
 public:
 Bar(); // 0-arg ctor
 Bar(int num); // 1-arg ctor
 Bar(const Bar& other); // cctor
 Bar& operator=(const Bar& other); // op=
 ~Bar(); // dtor
 ...
};

The “Big 4” of Classes (Review)

Assignment Operator (op=): Updates existing object based on another instance.

Construction and Destruction Details

Construction:
1. Construct/initialize data members in order of declaration within the class.

○ If data member appears in the initialization list, apply the specified
initialization, otherwise, default initialize.

2. Execute the constructor body.

Construction and Destruction Details

Construction:
1. Construct/initialize data members in order of declaration within the class.

○ If data member appears in the initialization list, apply the specified
initialization, otherwise, default initialize.

2. Execute the constructor body.

Destruction:
● When multiple objects fall out of scope simultaneously, they are

destructed in the reverse order of construction.
1. Execute the destructor body.
2. Destruct data members in the reverse order of declaration within the class.

Design Considerations

● What happens if you donʼt define a copy constructor? Or an assignment operator?
Or a destructor? Why might this be bad?

● How can you disable the copy constructor/assignment operator/destructor?

● In C++, if you don’t define any of these, one will be synthesized for you

● The synthesized copy constructor does a shallow copy of all fields

● The synthesized assignment operator does a shallow copy of all fields

● The synthesized destructor calls the default destructors of any fields

that have them

Set their prototypes equal to the keyword “delete”:

SomeClass(const SomeClass&) = delete;

Exercise 2: Foo Bar Ordering
int main() {
 Bar b1(3);
 Bar b2 = b1;
 Foo f1;
 Foo f2(b2);
 return EXIT_SUCCESS;
}

Method Invocation Order:
 1. Bar 1-arg ctor (b1)
 2. Bar cctor (b2)
 3. Foo 0-arg ctor (f1)
 4. ⤷ Bar 1-arg ctor

bar_(5)

num_ = 5

f1

b1

num_ = 3

b2

num_ = 3

 5. Foo 1-arg ctor (f2)

bar_()

num_ = 0

 6. ⤷ Bar 0-arg ctor
 7. ⤷ Bar op=

f2

 8. Foo dtor (f2)

12. Bar dtor (b2)

 9. ⤷ Bar dtor
10. Foo dtor (f1)
11. ⤷ Bar dtor

13. Bar dtor (b1)
num_ = 3

New and Delete Operators

New: Allocates the type on the heap, calling specified constructor if it is a class type

 Syntax:

type* ptr = new type;

type* heap_arr = new type[num];

Delete: Deallocates the type from the heap, calling the destructor if it is a class type. For
anything you called new on, you should at some point call delete to clean it up

 Syntax:

delete ptr;

delete[] heap_arr;

Exercise 3: Memory Leaks
class Leaky {
 public:
 Leaky() { x_ = new int(5); }
 private:
 int* x_;
};

int main(int argc, char** argv) {
 Leaky** dbl_ptr = new Leaky*;
 Leaky* lky_ptr = new Leaky();
 *dbl_ptr = lky_ptr;
 delete dbl_ptr;
 return EXIT_SUCCESS;
}

Stack Heap

class Leaky {
 public:
 Leaky() { x_ = new int(5); }
 private:
 int* x_;
};

int main(int argc, char** argv) {
 Leaky** dbl_ptr = new Leaky*;
 Leaky* lky_ptr = new Leaky();
 *dbl_ptr = lky_ptr;
 delete dbl_ptr;
 return EXIT_SUCCESS;
}

???

Exercise 3: Memory Leaks Stack Heap

0x602010 0x602030

0x602030lky_ptr

dbl_ptr

0x602050x_

5

How can we fix this leak?
delete lky_ptr;
~Leaky() { delete x_; }

An Acronym to Know: RAII

● Stands for “Resource Acquisition Is Initialization”
● Common C++ idiom, any resources you acquire (locks, files, heap memory, etc)

should happen in a constructor (i.e., during initialization), and then freeing those
resources should happen in the destructor (and handled properly in cctor,
assignment operator…)

● Prevents forgetting to call free/delete, the dtor is called automatically for you
when the object managing the resource goes out of scope.

● For more: https://en.cppreference.com/w/cpp/language/raii

https://en.cppreference.com/w/cpp/language/raii

Exercise 4: Bad Copy Stack Heap

class BadCopy {
 public:
 BadCopy() { arr_ = new int[5]; }
 ~BadCopy() { delete [] arr_; }
 private:
 int* arr_;
};

int main(int argc, char** argv) {
 BadCopy* bc1 = new BadCopy;
 BadCopy* bc2 = new BadCopy(*bc1); // cctor
 delete bc1;
 delete bc2;
 return EXIT_SUCCESS;
}

Exercise 4: Bad Copy
Stack

Heap

class BadCopy {
 public:
 BadCopy() { arr_ = new int[5]; }
 ~BadCopy() { delete [] arr_; }
 private:
 int* arr_;
};

int main(int argc, char** argv) {
 BadCopy* bc1 = new BadCopy;
 BadCopy* bc2 = new BadCopy(*bc1);
 delete bc1;
 delete bc2;
 return EXIT_SUCCESS;
}

0x...bc20x...bc1

0x...arr_ 0x...arr_

Invalid delete: BAD

as if!

The “Rule of Three”

● If your class needs its own destructor, assignment operator, or copy constructor, it
almost certainly needs all three!

● BadCopy is a good example why, we need a destructor to delete arr, and so
we needed a copy constructor too because otherwise we end up with a double
delete

● BadCopy also needs its own assignment operator for the same reason, even with
a fixed copy constructor, b1 = b2; would still break!

● For more info/examples, see
https://en.cppreference.com/w/cpp/language/rule_of_three

https://en.cppreference.com/w/cpp/language/rule_of_three

Review Questions
● What do the following access modifiers mean?

● What is the default access modifier for struct members in C++?

public:

protected:

private:

friend:

Member is accessible by anyone

Member is accessible by this class and any derived classes

Member is only accessible by this class

Allows access of private/protected members to foreign functions and/or
classes where this modifier is present

A struct can be thought of as a class where all members are default public instead of
default private. In C++, it is also possible to give member functions (such as a constructor)
to a struct.

Review: Member Functions

Foo obj1;

obj1.MemberFunction(); // call a member function

Foo obj2;

obj1 *= obj2; // call the member operator overload function

class Foo {
 public:
 // ctor, cctor, dtor...
 // Member function
 void MemberFunction();

 // Member operator overload
 Foo& operator*=(const Foo& rhs);
}

void Foo::MemberFunction() {
 /* implementation */
}
Foo& Foo::operator*=(const Foo& rhs) {
 /* ... */
}

foo.h foo.cc

Review: Non-Member Functions
class Foo {
 public:
 // ctor, cctor, dtor...
}

void NonmemberFunction(const Foo& f);

Foo operator*(const Foo& f1, const
 Foo& f2);

void NonMemberFunction() {
 /* implementation */
}
Foo operator*(const Foo& f1,
 const Foo& f2) {
 /* ... */
}

Foo obj1;

NonMemberFunction(obj1); // invoke a nonmember function

Foo obj2;

Foo obj3 = obj1 * obj2; // invoke the nonmember operator function

foo.h foo.cc

Review: Member vs Non-Member
Member Non-member

● Used when modifying the object
(reassigning and accessing data members)

● “Core” class functionality

● Allows access to private functions/data
members

● Function call: obj1.Function(obj2);
● Operator Overloads: obj1 *= obj2;

● Used for non-modifying and/or commutative
functions.

● When operating with the class on the
right-hand side

● Does NOT give access to private
functions/data members

● Only give friend keyword if NEEDED
○ friend allows for non-member private

access

● Function call: Func(obj1, obj2);
● Operator Overloads: obj1 * obj2;

Destructor (dtor): Cleans up the class instance. Deletes dynamically allocated memory (if any).

Constructor (ctor): Can define any number as long as they have different parameters.

Constructs a new instance of the class.

Copy Constructor (cctor): Creates a new instance based on another instance (must take a

reference!). Invoked when passing/returning a non-reference object to/from a function.

class Int {
 public:

};

 Int() { ival_ = 17; cout << "default(" << ival_ << ")" << endl; }
 Int(int n) { ival_ = n; cout << "ctor(" << ival_ << ")" << endl; }
 Int(const Int& n) {
 ival_ = n.ival_;
 cout << "cctor(" << ival_ << ")" << endl;
 }
 ~Int() { cout << "dtor(" << ival_ << ")" << endl; }

Constructors Revisited

int main(int argc, char** argv) {
 Int p; // 1.
 Int q(p); // 2.
 Int r(5); // 3.
 Int s = r; // 4.
 p = s; // 5.
}

What is getting called here?

default ctor
copy ctor
1 arg ctor
copy ctor
assignment operator

ival_ = 17

p

ival_ = 17

q

ival_ = 5

r

ival_ = 5

s

ival_ = 5

class Foo {
 public:
 Foo(int x, int y) : x_(x), y_(y) {}
 // cctor, dtor…

 // Member function
 void MemberFunction();

 // Member operator overload
 void operator*=(const Foo& rhs);
 private:
 int x_, y_;
}
foo.h

Initialization Lists

● Initialization lists allow a shorthand for
initializing members of a class instance

● Prevents the members from being
default initialized (which can be
beneficial if the default initialization is
expensive)

Initialization Lists

● When is the initialization list of a constructor run, and in what order are data
members initialized?

● What happens if data members are not included in the initialization list?

The initialization list is run before the body of the ctor, and data members

are initialized in the order that they are defined in the class, not by

initialization list ordering.

Data members that don’t appear in the initialization list are default
initialized/constructed before ctor body is executed.

Destructors Review

● When are destructors invoked? In what order are they invoked when multiple
objects are getting destructed?

● What happens when a destructor actually executes? (Hint: what happens to class
members?)

● An object’s destructor is run when it falls out of scope, or when the

delete keyword is used on heap objects constructed with new
● When a scope exits, local variables are destructed in reverse order of

construction

● Destructors are run in reverse order of construction: (1) run destructor

body (2) destruct remaining members in reverse order of declaration

When are these destructors run?

int main(int argc, char** argv) {
 Int p;
 Int q(p);
 Int r(5);
 Int s = r;
 p = s;
}

p

ival_ = 17

q

ival_ = 5

r

ival_ = 5

s

ival_ = 5

s dtor run

r dtor run

q dtor run

p dtor run

Exercise 2: Constructors and Destructors
int main(int argc, char** argv) {
 Int p;
 Int q(p);
 Int r(5);
 Int s = r;
 q.set(p.get()+1);
 return EXIT_SUCCESS;
}

p

ival_ = 17

q

ival_ = 5

r

ival_ = 17

ival_ = 18Output:
default(17)
cctor(17)
ctor(5)

get(17)
set(18)
dtor(5)

dtor(18)
dtor(17)

ival_ = 5

s

cctor(5)

dtor(5)

Exercise 5: IntArrayList
class IntArrayList {
 public:
 IntArrayList();
 IntArrayList(const int* const arr, size_t len);
 IntArrayList(const IntArrayList &rhs);

// synthesized destructor
// synthesized assignment operator

 private:
 int* array_;

size_t len_;
size_t maxsize_;

};

array_

len_

maxsize_

???

array_ will always point to
somewhere on the heap!

Note: Implementation
details on the worksheet

Exercise 5: IntArrayList
array_

len_

maxsize_

int[MAXSIZE]

MAXSIZE

0a

int main() {
 IntArrayList a;
 int copy_me[3] = {3,1,4};
 IntArrayList b(copy_me,3);
 IntArrayList c(b);
}

array_

len_

maxsize_

b

???3 1 4

3

6

array_

len_

maxsize_

c

???3 1 4

3

6

Exercise 5: Wrap
class Wrap {
 public:
 Wrap() : p_(nullptr) {}
 Wrap(IntArrayList* p) : p_(p) { *p_ = *p; }
 IntArrayList* p() const { return p_; }
 private:
 IntArrayList* p_;
};

p_ 0x...w

p_ nullptrw array_

len_

maxsize_

int[MAXSIZE]

a 0

MAXSIZE

Exercise 5: struct List

l

struct List {
 IntArrayList v;

};

array_

len_

maxsize_

int[MAXSIZE]

v 0

MAXSIZE

Exercise 5: Classes Usage Stack Heap

int main(int argc, char** argv) {
 IntArrayList a;
 IntArrayList* b = new IntArrayList();
 struct List l { a };
 struct List m { *b };
 Wrap w(b);
 delete b;
 return EXIT_SUCCESS;
}

Exercise 5: Classes Usage Stack Heap

int main(int argc, char** argv) {
 IntArrayList a;
 IntArrayList* b = new IntArrayList();
 struct List l { a };
 struct List m { *b };
 Wrap w(b);
 delete b;
 return EXIT_SUCCESS;
}

array_

int[MAXSIZE]

int[MAXSIZE]

int[MAXSIZE]array_v

array_vl

m

b 0x...

array_ int[MAXSIZE]a

p_ 0x...w

Note: len_ and maxsize_ left
out of diagram for space

Exercise 5: Classes Usage Stack Heap

int[MAXSIZE]

int[MAXSIZE]

int[MAXSIZE]

int[MAXSIZE]
int main(int argc, char** argv) {
 IntArrayList a;
 IntArrayList* b = new IntArrayList();
 struct List l { a };
 struct List m { *b };
 Wrap w(b);
 delete b;
 return EXIT_SUCCESS;
}

Still on the heap!

Implement the destructor:
IntArrayList::~IntArrayList() { delete[] array_; }

